Grazing livestock on cover crops

Alyssa Rippe-May and Sandy Johnson Dec. 6, 2021

Colorado State University

Evaluating Cover Crop and Forage Mixtures for Dryland Systems

www.DrylandAg.org

Project Goal:

Support producers in the High Plains to adopt management strategies that are profitable and build soil and ecosystem health.

Region

On-Farm Research

• Cooperating producers

Research Station Trials

KSU cropping systems experiments

Spring Planted Mixtures

2016 spring mix 15# forage barley **15**# oats 5# spring peas 5# hay millet 2# rapeseed 1# flax 1# safflower 1# sunflower

2017 spring mix 10# forage barley 10# triticale 2# rapeseed 1# flax 1# flax 1# safflower 1# sunflower 1# purple top turnip

Total: 45 lbs/acre, ~\$18/acre

Total: 41 lbs/acre, ~\$18/acre

FE

Post-Wheat Planted Mixtures

2017 Post-wheat mix

Total: 41 Ibs/acre, ~\$23/acre

20# triticale 6# Austrian winterpea 4# sorghum sudangrass 4# cowpea 3# sunflower 2# German millet 1# radish 0.5# rapeseed 0.2# phacelia

2018 Post-wheat mix

Total: 38.5 lbs/acre, ~\$24/acre

20# triticale 5# cowpea 4# Austrian winterpea 4# sorghum sudangrass 2# German millet 1# sunflower 1# radish 0.75# sunn hemp 0.5# rapeseed 0.2# phacelia

A CONTRACT OF

Post-Wheat Cover Crop

- Minimum of 40 acres
- Planted a set post-wheat cover crop mix mid-July to early September
- Grazed if possible
- After termination in early spring, planted corn or milo

Sampled:

- Forage Biomass
- Forage species composition
- Soil Moisture Samples
- Soil Bulk Density

Sampled:

- Livestock gains
- Following cash crop yields

Forage Production

2016 Spring Planted Forage Little reduction in cover after grazing due to regrowth

2017 Spring Planted Forage Cooler conditions slowed growth & increased weed pressure

2017 Post-wheat cover crop composition

2018 Post-Wheat Cover Crop Composition

RATORS RESOURCES BLOG CONTACT

Drylandag.org

Curt Sayles

DRYLAND FARMER

"We were diversified in our crop rotation, then we were diversified

Cole Mertens

DRYLAND FARMER

"Some of our land hasn't been worked for 20+ years, and now

K-STATE Research and Extension

Cover Crops Grown Post-Wheat for Forage Under Dryland Conditions in the High Plains

https://bookstore.ksre.ksu.edu/pubs/MF3523.pdf

Post-wheat planted cover crops may offer a longer and more flexible grazing period than spring-planted cover crops within wheat-based dryland cropping systems. However, low available soil moisture and variable weather patterns this time of year can make cover crop establishment and productivity highly variable. Concerns about disrupting good wheat stubble, managing volunteer wheat to reduce disease transmission, and controlling weeds should be considered.

Species Selection

Determining what to plant can be difficult with all the varied species available for use as cover crops. Producers can use the *Midwest Cover Crops Council Cover Crops Decision Tool* to help select species based on specified goals. The decision tool currently includes recommendations for Kansas and Nebraska counties. When cover crops are grazed, producers should choose species that will not only benefit soil health but will also be palatable and safe as forage for livestock. Fortunately, many of the species recommended for use as cover crops are also good for forage production. Factors such as nutritive content and potential toxicities must be considered.

While some forages come with risks (i.e., nitrates, prussic acid, alkaloids), most can be managed. Planting immediately after wheat harvest comes with the risk of limited moisture in August and September, plant stress, and the accumulation of nitrates. Members of the sorghum family (sorghum-sudan, sudan-

grass, grain sorghum, and forage sorghum) as well as millets, oats, and brassicas are common nitrate accumulators. Environmental stress and excess nitrogen can result in increased nitrate levels in these plants. Anecdotal evidence suggests that the tolerance level of livestock may be different when grazing green growing forages than when feeding hay or silage. Animals consume green forage at a slower rate (graze) than when eating hay or silage at a bunk. In addition, animals will selectively graze heads and leaves, which are lower in nitrates, before moving on to stalks. Nitrate concentration is highest in the base of the stalk, thus careful observation and management might allow for grazing forages with elevated nitrate levels. Producers should use caution when grazing forages with high nitrate potential and test before grazing.

Although a hard freeze does not change nitrate content, prussic acid toxicity can occur when grazing sorghums, particularly young plants, and in the fall following a frost/freeze. Potential problems will be addressed in the grazing management section. For more information see *Nitrate Toxicity*, *MF3029* (K-State Research and Extension), or *Nitrate Poisoning*, 1.610 (Colorado State University Extension). To learn more about prussic acid toxicities, see *Prussic Acid Poisoning*, *MF3040* (K-State) or *Prussic Acid Poisoning*, 1.612 (CSU). For a more complete overview of forage crops with potential toxicities, see the K-State publication, *Grazing Management: Toxic Plants (MF3244)*.

COLORADO STATE UNIVERSITY

Managing Spring Planted Cover Crops for Livestock Grazing under Dryland Conditions in the High Plains Region

Fact Sheet No. 0.309

Crop Series Production

by Joe Brummer¹, Sandy Johnson², Augustine Obour³, Kat Caswell⁴, Angie Moore⁵, John Holman⁹, Meagan Schipanski⁷, and Keith Harmoney⁸

Quick Facts

https://www.bookstore.ksre.ksu.edu/pubs/MF3443.pdf

caunting task with an of the varied species available for use as cover crops. For Kansas and Nebraska producers, local Land Grant Universities and the Midwest Cover Crops Council have developed a **decision tool** to help select species based on specified goals. When cover crops are grazed, one needs to choose species that will not only benefit soil health but will also be palatable and safe as forage for livestock. Fortunately, many of the species currently recommended for use as cover crops are also good for forage production. Factors such as nutritive content and potential toxicities must be considered.

While a number of potential problems can occur with various forages, most can be managed. The most frequent problem is the accumulation of nitrates that is common with oats and brassicas but can occur in a variety of species under certain growing and management conditions. Most recommendations for feeding nitrate containing feeds come from dry forages. Anecdotal evidence would support the idea that the tolerance level may be different in green growing forages than in dried and baled hay. Rate of intake is less in green forage than baled feed, and selectively grazing leaves prior to stalks, which are lower in nitrates, helps reduce the potential toxicity issues associated with high nitrates. However, caution is still required when grazing high nitrate forages and testing before grazing is recommended. Prussic acid is another toxic-

¹Joe Brummer, Associate Professor/Extension Forage Specialist, ¹Angie Moore, Research Associate, and ⁷Meagan Schipanski, Assistant Professor, Colorado State University, Soil and Crop Sciences; ¹Sandy Johnson, Professor/Extension Beef Specialist (Colby), ¹Augustine Obour, Associate Professor (Haye), ¹John Holman, Professor (Garden City), and ¹Keith Harmoney, Range Scientist (Haye), Kansas State University; and ¹Kat Caswell, Extension Educator (McCook), University of Nebraska, (12/18) to publications on nitrate (CSU or KSU fact sheets) and prussic acid (CSU or KSU fact sheets) toxicities for more information. For a more complete overview of forage crops with potential toxicities, please see the publication Grazing Management: Toxic Plants.

For spring planted cover crops, most, if not all, of the species planted should be classified as cool-season in order to be able to plant early and take advantage of winter and early spring moisture. Species that fall into this category include the small grains (e.g. wheat, barley, oats, triticale, and cereal rye), brassicas (e.g. turnip, rapeseed/canola, and radish), and legumes (e.g. field/winter peas, winter lentils, vetch, and sweetclover). In our experience, including warm-season species like millet, sorghum-sudangrass, and sunflower in spring planted mixes results in only minimal establishment and contribution of these species to yield and forage quality. By the time warm-season species germinate, the cool-season species have already established and have a competitive advantage. Therefore, instead of investing in complex mixes that include both cool- and warm-season species, your options are to cut back on the total seeding rate by eliminating warm-season species from the mix, increase the seeding rate of cool-season species in the mix, or add other cool-seasons to the mix. Depending on your crop rotation, a targeted planting of warm-season cover crops for summer forage

grazing can be a good option. Complex mixtures of 6 or more species, often referred to as "cocktails," are commonly recommended. The benefits of cocktails relative to single species or simple mixtures of 2 to 4 species depend on your specific management goals. Competitive cool-season grass species tend to be the highest biomass producers, which can optimize weed control

of winter and early spring moisture.

 Cool-season grasses tend to dominate, often to the detriment of other species, when planting cover crop mixtures in the spring.

 Yield variability is high when growing cover crops under dryland conditions in the High Plains Region ranging from under 1,000 lbs/ac in dry years to almost 5,000 lb/ac in

wet years

 Stocking rates must be flexible because of the large year-to-year variability in cover crop productivity.

• Spring planted cover crops can provide an average of 30 to 45 days of grazing.

 Start grazing spring planted cover crops when they reach 6 to 8 inches of growth to take advantage of their high nutrient content and palatability.

©Colorado State University Extension. 12/18. extension.colostate.edu

Summary of spring grazing

	Start graze	Days grazing	DM yield	ADG	Stocking rate lbs/ac
NW of Bucklin, KS '16	5/25	36	4040	pairs	640
NW of Bucklin, KS '17	6/13	31	1860	pairs	270
NW of Grainfield '16	5/18	29	4460	3.37	890
NW of Grainfield '17	5/30	28	2235	2.27	610
S of Seibert, CO '17	6/15	22	1800	3.91	650
S of Oberlin, KS '16	5/25	29	5020	2.48	370
N of Almena, KS '16	7/6	28	3880	2.34	460
N of Almena, KS '17	6/6	27	2110	1.3	320
NE of Brush, CO '17	6/22	25	1080	0.69	440
E of Venango, CO '16	7/7	28	2650	1.39	940

Wheat Yields following Spring Cover Crop

Treatment	Yield (bu/ac)
Fallow	52.2 a
Grazed	42.5 b
Ungrazed	41.3 b

Fallow plots had ~10 bu/ac greater yield

2016: 1 out of 4 fields with yield reduction

2017: 1 out of 3 fields with yield reduction

Performance of yearlings grazing post-wheat planted forage

Date	graze	grazing	calculated grazing days	Yield	ADG	Stocking rate lbs/acre
July 8	9/15	33	38	1886	0.63	534
July 10	12/8	33	35	2143	0.97	711
July 18	Not grazed	k		514		
Sept 11	Not grazed	k		816		
July 7	1/14	32	44	856	0.41	453
July 9	12/17	57	74	1236	2.03	254
July 20	Too wet to graze			2294		
1 st wk Aug	10/1	4		657		
)))))))))	Date Date Uly 8 Uly 10 Uly 18 ept 11 Uly 7 Uly 9 Uly 20 st wk Aug	Janting DateStart grazeJategrazeJuly 89/15July 1012/8July 18Not grazedPept 11Not grazedJuly 71/14July 912/17July 20Too wet tost wk Aug10/1	anting pate start graze grazing graze grazing uly 8 9/15 33 33 33 33 33 33 33 33 33 33 33 33 33	Jairting grazeJairting grazingJairting grazingJairting grazingJairting grazing grazing daysJairting grazegrazegrazing grazing daysgrazing daysJuly 89/153338July 1012/83335July 18Not grazeJoint grazeJuly 18Not grazeJoint grazeJuly 71/143244July 912/175774July 20Too wet to grazeJoint grazest wk Aug10/14Joint graze	DateStartDaysCalculated grazing grazing daysDividuated YieldDategrazegrazing grazing daysYieldStartgrazegrazing daysYieldStart9/1533381886Start12/833352143StartNot graze514514StartNot graze514StartNot graze514StartNot graze514Start1/143244Start12/175774Start10/1457	Note Start Days Calculated Division Add Date graze grazing grazing grazing days Vield Vield

Corn Yields Post-Wheat 2017

The graph above shows the corn yield for the only field we were able to get corn yield data from due to hail and severe weather.

Sunflower yield post-wheat, post hailed corn 2017

General wheat pasture stocking rates

 Fall – 250 to 600 lbs of bovine per acre or 1 to 2 acres/stocker

 Spring – 500 – 1200 lbs of bovine per acre or 0.75 to 1.3 acres/stocker

<u>https://www.drylandag.org/resources.html</u> Carrying Capacity Calculator Number of animals for fixed grazing days

	Inputs	Number of animals	
Acres	100		
Estimated yield per acre, dry matter basis	1700 lbs		
% utilization	30		
Animal weight	800		100
Length of grazing	45		
Dry matter Intake	2.5 %		1000
		57	

100 x 1700 x (30/100) /((800 x (2.5/100))* 45)

Lbs produced (DM)=51,000=57 headIntake per day x days 20×45

<u>https://www.drylandag.org/resources.html</u> Carrying Capacity Calculator Days of grazing for fixed number of animals

	Inputs	Days of grazing
Acres	100	
Estimated yield per acre, dry matter basis	1700 lbs	
% utilization	30	
Animal weight	800	
Number of animals	57	
Dry matter Intake	2.5 %	
		45

100 x 1700 x (30/100) /((800 x (2.5/100))* 57)

<u>Lbs produced (DM)</u> = 51,000 = 45 days Intake per day x no. of hd 20 x 57

Grazing Management

- Continuous vs strip vs paddock
- Water

Lush forage cautions

- Bloat
 - Turnout full
 - Most problem during periods of lush growth
 - Supplement with high quality feed
 - Use Ionophores Rumensin or Bovatec
- Grass Tetany
 - Older lactating cows
 - Stockers
 - High Mg mineral

Cautions

- Nitrates and prussic acid potential
- Potentially invasive rangeland weeds
 - Sunn Hemp
 - Sweetclover
- Is Hairy vetch poisonous
- Other issues
- <u>https://www.bookstore.ksre.ksu.edu/pubs/MF3244.pdf</u>

GRAZING MANAGEMENT: TOXIC PLANTS

Economics – Range in Additional Costs

	Per AUM	Per Acre
Additional costs		
Fence materials	\$3 - 7	\$1 - 7
Fence labor	\$2 - 5	\$1 - 2
Livestock labor	\$3.74-3.76	\$1.59-1.72
Seed	\$11 -25	\$10 - 18.00
Fertilizer	\$7 - 16	\$7 - 9
Herbicide	\$5 - 12	\$5 - 9
Machinery Cost	\$12 - 13	\$5 - 23
Other (water)	\$1 - 19	\$1 - 8
Total Costs	\$52 - 92	\$39 - 72

Range in Partial Budget Values

	Per AUM	Per Acre
Increased Returns	\$32 - 81	\$44 - 74
Reduced Returns		\$8 - 40
Additional Costs	\$52 - 92	\$39 - 72
Reduced Costs		\$15 - 49
Herbicides		\$15
Feed		\$11
Pasture leases		\$20
Net Change Income		\$17 to \$79

What is the cost of the alternative?

- \$1.32 hd /d
- \$1.90 hd/d

• Lease

• \$0.90 / hd/ d

KFMA annual feed & pasture cost2016 -2020\$1.21 to \$1.57 per hd per day

Corn price and cost of gain*

- Steer cost of gain (\$/cwt) = \$22.32 + (\$14.09 x corn price)
- Heifer cost of gain (\$/cwt)=\$21.16 + (\$15.21 x corn price)

Corn Price	Steer COG	Heifer COG
\$3.50	71.64	74.40
\$3.75	75.16	78.20
\$4.00	78.68	82.00
\$4.25	82.20	85.80
\$4.50	85.73	89.61

* Focus on Feedlots Kansas Feedlot Performance and Feed Cost Summary 2017 Annual Review

Wheat pasture cost of gain

- Corn 1.0 Mcal NE_m/lb
- Wheat 0.73 Mcal NE_m/lb

Corn Price	Steer COG	Wheat Pasture COG	
\$3.50	71.64	52.29	
\$3.75	75.16	54.86	
\$4.00	78.68	57.44	
\$4.25	82.20	60.01	
\$4.50	85.73	62.58	

Grazing annual forages

PROS

- Many cover crop species produce excellent quality forage
- Grazing a cover crop may offset management costs
- May allow for longer rest periods on pastures
- Portable fencing can improve utilization

CONS

- Harder to predict forage availability in lower rainfall areas
- Always need a backup plan for livestock
- Economical system to provide water is critical
- Fencing may be needed

If you don't want to own cattle, someone else might

Wise producers have said:

- If you think you need to move soon, do it now, not tomorrow
- Seed won't grow if it isn't in the ground
- Work towards a balance, not maximizing livestock or crop side of equation

Start with where is your farm?

Tell us your goals #1 goal Good Grazing #2 goal Lasting Residue	×
#1 goal Good Grazing #2 goal Lasting Residue	×
#2 goal Lasting Residue €	
v	×
Add Goal +	
Hide current cash crop options	
Current cash crop Planting date Harvest date	
Corn - Seed 10 May 2021	×

Available Cover Crops

Planting periods:Reliable EstablishmentFreeze/Moisture Risk to EstablishmentCurrent cash crop growing periodGoal fulfillment:4 =Excellent, 3 =Very good, 2 =Good, 1 =Fair, 0 =Poor

Cover Crop	April 1	May 1	June 1	July 1	August 1	September 1	October 1	November 1
Millet, Pearl 4 4								
Rye, Winter Cereal 4 4								
Sorghum-sudangr 4 4								
Triticale, Spring 🚯 4 4								
Triticale, Winter 4 4								
Barley, Winter 4 3								
Wheat, Winter 4 3								
Oats, Black 42								
Oats, Spring 🚯 4 2								
Soybeans 41								

See links at: twincreeks.ksu.edu/livestock

- Herd animals
- They ruminate
- They seek place with most desirable temperature
- They need water
- They leave about half of nutrients they eat on site

Grazing Options in Western Kansas

ltem	J	F	Μ	Α	Μ	J	J	Α	S	0	Ν	D
Native pasture												
Crop Residue												
Winter Annuals												
Spring Annuals												
Summer Annuals												

•MF3244

Plant	C1	G ²	W ³	S4	TDN ⁵	CP ⁶	Toxicities	Livestock affected
Amaranth	В	Α	L	w	68	13-18	Some species OK, some poisonous	
Beet (bulb)	В	В	н	С	75-79	7-11	Choking	All livestock species
Beet (tops)	В	В	н	С	58-61	15-17		
Brassica hybrid	В			С	67-70	15-16	Nitrate, polioencephalomalacia, anemia, emphysema	All cattle
Buckwheat ⁷	В	Α	м	w	62-75	3-25	Photosensitive dermatitis	Horses
Canola	В	A/B	м	С	62-65	13-16	Nitrate toxicity, bloat, polioencephalomalacia	All cattle
Carrot (root)	В	A/B	н	С	83	10	Scouring	Cattle
Carrot (top)	В	A/B	н	С	73	13	Nitrate	
Chicory leaves	В	Р		w	67	8		
Chicory roots	В	Р		w	89	4		
Flax ⁸	В	Α	м	С			Prussic acid (green flax), seeds SAFE	All cattle
Kale	В	Α	м	С	69	22	Nitrate, polioencephalomalacia, anemia, emphysema	All cattle
Mustard ⁹	В	A/P	н	С	53	10	Glucosinolate toxicity	All livestock species
Phacelia	В	Α	L	С	56	15		
Radish	В	Α	н	С	66	20	Nitrate, polioencephalomalacia, anemia, emphysema	All cattle
Rapeseed	В	A/B		С	70	17	Nitrate, polioencephalomalacia, anemia, emphysema	All cattle
Safflower	В	Α	н	w	55-58	10-13		
Spinach ¹⁰	В	Α	м	С	51	31		
Squash ¹⁰	В	Α		w	54	26		
Sunflower ¹¹	В	Α	н	w	55	10-12	Nitrate	All cattle

FORAGE CROPS

GRAZING MANAGEMENT: TOXIC PLANTS

, polioencephalomalacia, anemia, emphysema	All cattle
etany, bloat	All cattle, lactating cows
etany, bloat	All cattle, lactating cows
, acidosis, founder	All cattle
, prussic acid	All cattle and sheep
, prussic acid	
, prussic acid	All cattle and sheep
etany, bloat	All cattle, lactating cows
, prussic acid	
etany	All cattle, lactating cows

continued

		cornStalkGrazingCalc [Compatil									mpatibility N	bility Mode] - Excel								Sandy Johnson 🛛 🖾					
File		Home	Insert	Draw	Page Layou	ut Formula:	s Data	Review	v View	Help	$igodoldsymbol{Q}$ Tell me what you	u want to do)												
New Slide	Ta	ble Pict	cures Online Picture	Screensh	ot Photo	Shapes Icons	3D S Models	SmartArt (Chart	Get Add-ins My Add-ins	Zoom Link	Action C	Comment	A Text Box	Header Wo & Footer	A ordArt D	Date & Slid	e Object	π Equation	Ω Symbol	Video	Audio	Screen Recording		
Α	В			С		D	E	F G	Э Н	I	J K		L M	N	O P		Q	R		S T		U	5		
1 Corn Stalk Inputs Cost per Pound of Purchased Nu													Nutrie	nt											
2			•								Calculated Value	es			•										
3 4 5 6	Ч	Corn yield Stalk harvest efficiency (50% Recommended)						240.00 50.0%	bu/ac		3,369 lbs DM per1,684 Available D		-	\$ 0.03 \$ 0.00	71 per	pound of C	Crude Prot	ein							
7 8 9	VAILABILIT	Total nu Average	mber of animals animal weight					70 1,100	head					\$ 0.0030 per pound of DM											
10 11 12	FEED A	Days on corn stalks					120	days		308 AUMs need	eded		Cost per Pound of Available Nutrient												
13 14 15 16		Cost pe	Cost per acre					130	per acres		128 Acres need	aea		\$ 0.0106 per pound of TDN											
17 18 19	TRITION	Percent Percent	dry matter crude pro	r tein (on a	DM basis)			90.0% 8.0%							\$ 0.00	159 per	pound of E								
20 21 22	NN	Percent	TDN (on a	DM basis	5)			56.0%						Cost	\$ 0.15	98 per	pound of C	attle Ha	ein						
23 24 25 26	ANSPOR	Cattle tr Transpo	ortation co	on distan st per loa	ce (ranch t ded mile	o corn field)	\$	75 5.00	miles per mile		\$375 Cost per tri	ip		-	\$ 0.02	28 per	pound of T	DN							
27	TR	Animals per load					35																		
28 29 30	NO	How far	to check o	attle (one	e way)			60	miles					Cost	: per Po	ound	of Nutr	ient Co	onsume	ed					
31 32 33	CARE &	Transpo Other cl	ortation co harges (lat	st per mil oor) per vi	e to check isit	cattle	\$	0.45 30	per mile		\$84.00 Cost per tri	rip		-	\$ 0.18 \$ 0.02	41 per	pound of C pound of T	Crude Prot	ein						
34	S S	Calculator	Example		to			E							¢ 0.01	47 por	nound of F								

 $(\rightarrow) \rightarrow C$

U https://cropresidueexchange.unl.edu

CROP

RESIDUE

EXCHANGE

... ☑ ☆

Home Resources Login Register

Register

Our goal is to increase the use of crop residue for livestock grazing by helping crop producers better make available their crop residue to cattle producers and develop mutually beneficial grazing agreements.

× +

LEARN MORE

Crop Producers

List crop residue available for potential grazing arrangements.

Livestock Producers

Search crop residue listings available for potential grazing arrangements.

LIST CROP RESIDUE & FORAGE

FIND FORAGE

Ð

Available: 11/14/2020 - 3/31/2021

Corn, 135.0 acres, Partially Fenced, Water Onsite, No Care Provided, \$0.4 per head per day

SHERMAN COUNTY, NE 285 AUMs Available

114

miles

164
milesAvailable: 11/18/2020 - 2/15/2021Corn, 237.3 acres, Unfenced, Water Onsite, Care Provided, \$0.85 per head per dayPOLK COUNTY, NE580 AUMs Available

165
milesAvailable: 10/17/2020 - 2/28/2021Corn, 282.1 acres, Unfenced, Water Onsite, Care Provided, \$15 / acreBOONE COUNTY, NE737 AUMs Available

165
milesAvailable: 10/17/2020 - 2/28/2021Corn, 130.5 acres, Unfenced, Water Onsite, Care Provided, \$15 / acreBOONE COUNTY, NE341 AUMs Available

165
milesAvailable: 10/15/2020 - 2/28/2021Corn, 158.0 acres, Unfenced, Water Onsite, Care Provided, \$15 / acreBOONE COUNTY, NE413 AUMs Available

Lactipro[®] harnesses the power of *Mega e*[™], a superior lactic acid utilizer, to enable beef and dairy producers to support healthy rumen pH and improve profitability.

... ⊘ ☆

In 2020 MS Biotec is launching two new Lactipro product lines with stability of months instead of days – LactiproFLX® and LactiproNXT®.

Livestock PFT Signature Program

- Forage sampling and analysis
- https://www.asi.k-state.edu/research-and-extension/beef/agentresources/programmingmaterials.html

K-State home » College of Agriculture » ASI » Research and Extension » Beef » Agent Resources » Programming Materials

Animal Sciences and Industry

Programming Materials KSUBeef.org Home Beef Stocker Field Day Cattlemen's Day **Forage Sampling** Ranching Summit Winter Ranch Management **Beef Team Webinars** YouTube Channel Feed & Water Reproduction & Genetics Cost of Production & Marketing **Employee Management** Prussic Acid Legal/Regulatory Prussic Acid Demo Talk Proceedings and Research Reports presentation Sunflower Supreme Replacement Heifer Nitrates Example video Program

Health

Forage Sampling and Feed Analysis Forage Sampling Action Plan Understanding Feed Analysis Forage Sampling Analysis Evaluation Forage Sampling and Feed Follow-up Evaluation How to Sample Forages for Nutrient Analysis video Understanding Forage Analysis video Understanding Nitrate Toxicity for Cattle and Management Practices

>> Back to Professional **Development Materials**